

Reg		g. No:													
SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR															R
(AUTONOMOUS)															
		B.Tec	h II Yo	ear I S	Seme	ster S	Supp		ntary	Exan	ninati	ons [Decemb	oer-2021	
					3	IKE		il OF 1 il Eng	VIA I I ineerir	rial (KIA)	L9-11				
Time: 3 hours M													Max. M	larks: 60	
(Answer all Five Units $5 \times 12 = 60$ Marks)															
					(Alls	wer a			, <u>с а г</u> . Т.Т	2 – 0	o wiai	K3)			
1	a	a A cylindrical thin drum 80 cm in diameter and 3 m long has a shell thickness L3												s L3	6M
-		of 1 cm. If the drum is subjected to an internal pressure of 2.5 N/mm2, Take											0112		
		E= 2x 105 N/mm2 Poisson's ratio 0.25 Determine (i) change in diameter (ii)													
		change in length and (iii) change in volume.													
	b	• A thin cylindrical shell is 3m long and 1m in internal diameter. It is subjected											d L3	6M	
		to internal pressure of 1.2 MPa. If the thickness of the sheet is 12mm, find the											e		
		circumterential stress, longitudinal stress, changes in diameter, length and values. Take $E=200$ CPa and $u=0.2$													
		volume.	I ake I	2-200	Ura a	ina μ–	0.5.	01	2						
2	a	a Calculate the thickness of metal necessary for a cylindrical shell of intern												1 L3	6M
		diameter 160 mm to withstand an internal pressure of 8 N/mm ² , if maximum hoop stress in the section is not exceed to 35 N/mm ² .											n		
	b	b A cylindrical shell has the following dimensions: Length $= 3$ m Insid										e L3	6 M		
		diameter = 1 m Thickness of metal = 10 mm Internal pressure = 1.5 MPa										a			
		Calculate the change in dimensions of the shell and the maximum intensity of shear stress induced. Take $E = 200$ CPs and Psizzer's ratio = 0.2													
		shear she	ss mai	uced.	I ake r	2 – 20	0 GPa			i s rat	10 - 0.	.3			
3	a	a Derive kernel of section for (i) Rectangular section. (ii) Circular section								on .	L3	6M			
	b	b A line of thrust, in a compression testing specimen 15 mm diameter, it percention of the analysis of the approximate but is displaced from it. Colorlate the									s L3	6M			
		parallel to the axis of the specimen but is displaced from it. Calculate the distance of the line of thrust from the axis when the maximum stress is 20 %									3 6				
		greater the	an the	mean	stress	on a r	norma	l sectio	on.		mam	511050	5 15 20 A	,	
	OR														
4	a	Explain r	naxim	um sh	ear str	ess th	eory.							L2	6M
	b	Explain r	naxim	um sh	ear str	ain en	ergy t	heory						L2	6M
								UNIT	-III						
5	a	The ratio	of ins	side to	outsi	de dia	meter	of a	hollow	y shaft	t is 0.	6. If t	here is a	a L3	6M
		solid shaft with same torsional strength, what is the ratio of the outside										е			
	h	diameter of hollow shaft to the diameter of the equivalent solid shaft A solid shaft is to transmit 300 kW at 120 mm. If the shear stress is no										is not to	а Т 2	6M	
	D A solid shaft is to transmit 300 KW at 120 rpm. If the shear stress is not to exceed 100 MPa Find the diameter of the shaft. What percent saying in									י בס ח	UIVI				
		weight would be obtained if this shaft were replaced by a hollow one whose internal diameter equals 0.6 of the external diameter, the length, material and									e				
											t				
		maximum allowable shear stress being the same?													

Q.P. Code: 19CE0103

8

OR

- 6 a A hollow shaft, having an inside diameter 60% of its outer diameter, is to L3 6M replace a solid shaft transmitting the same power at the same speed. Calculate the percentage saving in material, if the material to be used is also the same.
 b A closely coiled helical spring made of 10 mm diameter steel wire has 15 L3 6M
 - **b** A closely coiled helical spring made of 10 mm diameter steel wire has 15 **L3** coils of 100 mm mean diameter. The spring is subjected to an axial load of 100 N. Calculate : (i) The maximum shear stress induced, (ii) The deflection, and (iii) Stiffness of the spring. Take modulus of rigidity, $C = 8.16 \times 104$ N/mm²

UNIT-IV

7 a Derive Clapeyron's Equation of three Moments.
b A continuous beam ABC of constant moment of Inertia carries a load of 10 L3 6M kN in mid span AB and a central clockwise moment of 30 kN-min span BC. Span AB = 10 m and span BC = 15 m. Find the support moments and plot the shear froce and bending moment diagram.

OR

a State advantages of fixed supports.
b Analyze the continuous beam ABCD shown in the figure below using L3
6M theorem of three moments. Draw SFD and BMD.

9 a State the differences between straight beam and curved beam with examples.
b Explain the importance of curved beams in structures.
L2 6M
L3 6M

OR

a Explain the importance of simply supported on three supports equally spaced
 b Analyse the circular beam loaded uniformly and supported on symmetrically
 L3
 6M
 b Analyse the circular beam loaded uniformly and support on symmetrically
 b Analyse the circular beam loaded uniformly and support on symmetrically
 c Analyse the circular beam loaded uniformly and support on symmetrically
 c Analyse the circular beam loaded uniformly and support on symmetrically
 c Analyse the circular beam loaded uniformly and support on symmetrically

*** END ***

K19